NASA/TM-2002-211738

Some User’s Insights Into ADIFOR
2.0D

Daniel P. Giesy
Langley Research Center, Hampton, Virginia

|
June 2002

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this
important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA'’s scientific and technical information.
The NASA STI Program Office provides
access to the NASA STI Database, the
largest collection of aeronautical and space
science STT in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report

types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed
to be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript
length and extent of graphic
presentations.

e TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results. .. even providing videos.

For more information about the NASA STI
Program Office, see the following:

e Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STT Help
Desk at (301) 621-0134

e Phone the NASA STI Help Desk at (301)
621-0390

e Write to:
NASA STT Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2002-211738

Some User’s Insights Into ADIFOR
2.0D

Daniel P. Giesy
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

|
June 2002

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (N'TIS)
7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Abstract

Some insights are given which were gained by one user through
experience with the use of the ADIFOR 2.0D software for automatic
di erentiation of Fortran code. These insights are generally in the
area of the user interface with the generated derivative code — particu-
larly the actual form of the interface and the use of derivative objects,
including “seed” matrices. Some remarks are given as to how to it-
erate application of ADIFOR in order to generate second derivative
code.

1 Background

Engineering systems are often studied using computer models. These mod-
els will typically contain parameters which can be used to represent design
decisions (e.g., the size of structural members, the gains in a control system)
and/or operating conditions (e.g., temperature, initial conditions, payload
mass). The computer model can be used to analyze the engineering system
by assigning values to the design and operating parameters and calculating
performance measures (such as measures related to the stability of dynam-
ical system) or simulating how the system will behave under the conditions
defined by the parameter values. The computer model can be further used
for design purposes by programming the computer to select suitable values
for the design parameters to achieve desired engineering properties such as
strength, performance, etc.

Mathematically, the computer model is a function. The independent
variables are the design and operating parameters. The dependent variables
are the various system quality metrics (which could be anything from an
eigenvalue to a complete response time history) which the computer model
computes from the input parameters.

A critically important tool in using the computer model for analysis and
design is the knowledge of the sensitivity of the system quality metrics to
variation in the design and operating parameters; i.e., the gradient of the
function. The sensitivities are, themselves, valuable information to know
about the system. A point design of a system might have good quality mea-
sures; but, if the system is highly sensitive to parameter variation, small
errors in those parameters might change the system into one of poor qual-
ity. The gradients also give useful information to some design tools such as
optimization techniques.

Once one has a computer model of an engineering system, there are var-
ious options as to how to calculate the gradient; for example, numerical
differentiation, analytical derivation of the gradient formulae and writing a
computer program to evaluate them, or automatic differentiation. Numerical
differentiation (e.g., divided forward differences) is inherently inaccurate. In-
accuracies can be reduced to some extent, but only at substantial additional
computational expense (such as 2 or 4 point symmetric divided difference
formulae). Particularly for realistic computer models of complex engineer-
ing systems, derivation of analytic gradients is unacceptably labor intensive
and error prone. This makes automatic differentiation by systems such as
ADIFOR, the subject of this note, particularly attractive. The derivative
values calculated are numerically exact, not approximate; the tedious work
of analytic differentiation is done by computer, not by error-prone hand cal-
culations; and the computational time required to calculate gradients in this
manner is comparable to the forward difference method of numerical dif-
ferentiation, which is the fastest, but least accurate, method of numerical
differentiation.

A group of researchers in the Guidance and Control Branch (GCB) of the
NASA Langley Research Center has for several years now been considering
the problem of applying neighboring optimal control techniques to guidance
problems (see, for example, [1, Chapter 6]). In this application, it is desired
not only to determine the control which results in an optimal trajectory, but
also to determine how to apply corrections to that control to take account
of perturbations in the operating parameters or drift away from the nominal
optimal trajectory and still have an approximately optimal trajectory. Im-
plicit function theory is applied to the gradient of an optimal Lagrangian of
a discrete approximation to the problem to represent the sensitivity of de-
sign variables to variation in operating parameters. If the Lagrangian of the
discretized optimal control problem is represented by £ while the design vari-
ables (including the Lagrange multipliers) and the operating parameters are
represented, respectively, by v and w, then the optimal value v*(w) of v cor-
responding to a given value of w is found by solving the nonlinear necessary
condition equation £,(v,w) = 0 for v (subscripts represent differentiation).
Solving this equation using a Newton-Raphson iteration requires not only
the gradient L., but the also Hessian L£,,. Then calculating the sensitivity
of v¥(w) to variation is w requires also the mixed second partial derivative
Loy

This research group has for over a year and a half been using ADIFOR to

2

find first and second derivatives of components of the computer model which
are then used to build up the Lagrangian gradient, Hessian, and mixed second
partial derivative. This represents the time frame in which the group has been
testing their techniques using computer models which are too complex to
allow the practical use of hand-derived first and second derivative formulae.

The Lagrangian gradient is used to find an initial approximation to the
nominal optimal trajectory. The Lagrangian gradient and Hessian are used
to find the accurately converged nominal optimal trajectory needed as the
starting point in the sensitivity calculation. The Lagrangian Hessian and
mixed second partial derivative of the Lagrangian are being used in deter-
mining the corrections to the controls which are needed to generate a linear
approximation to the neighboring optimal trajectories.

ADIFOR. has proved to be an enabling technology in carrying this study
forward. It was during the course of the study just outlined that the user’s
insights which are the subject of this note were developed.

2 Introduction

ADIFOR is an acronym for Automatic Dlfferentiation of FORtran. “ADI-
FOR implements automatic differentiation by transforming a collection of
FORTRAN 77 subroutines that compute a function f into new FORTRAN
77 subroutines that compute the derivatives of the outputs of f with respect
to a specified set of inputs of £” [2, p. 3]. Reference [2] tells how to ob-
tain, install, and run ADIFOR. Reference [2] and other information about
ADIFOR can be found at the web site http://www.cs.rice.edu/ adifor/.
It is assumed that the reader of this note is familiar with reference [2]. In
speaking of Fortran 77, an effort will be made to use the vocabulary of the
standards document ANSI X3.9-1978 [3].

One who reads the phrase “new FORTRAN 77 subroutines that compute
the derivatives of f” might suppose that the ADIFOR generated code re-
turns the partial derivatives of the scalar components of f with respect to
the scalar components of x. Actually, the ADIFOR, generated code expects
the user to supply one or more sets of coefficients; and, for each set of coeffi-
cients supplied, the ADIFOR generated code returns the linear combination
of all the partial derivatives of the scalar components of f with respect to
the scalar components of x using this set of coefficients. By proper choice of
the coeflicients, the individual partial derivatives can be recovered, but other

derivative related information such as directional derivatives can also be re-
turned by the ADIFOR. generated code. One of the purposes of the present
note is to clarify the instructions given in [2| as to how the user chooses and
passes those sets of coefficients and how to associate each returned derivative
related datum with the correct set of coefficients and the correct component
of f.

In other words, the purpose of this note is to supplement the information
given in [2| on how to make use of the “new FORTRAN 77 subroutines that
compute the derivatives.” Specifically, the user must write a driver routine
which calls the ADIFOR generated subroutines that compute the derivatives.
This note provides information which the user needs in order to write a driver
routine. Clarification is given in two areas related to communication between
the user’s program and the ADIFOR generated derivative code:

1. Variables in ADIFOR generated subroutine calling sequences or in ADI-
FOR generated common blocks which were not in the user’s original
code.

2. The use of “derivative objects”.

Caveats: This note will deal exclusively with ADIFOR generation of
code to calculate dense Jacobian matrices (i.e., ADIFOR, preprocessor option
AD_FLAVOR has its default value dense, |2, Chapter 9]). Anything in this
note which is specific to a computer operating system will refer to the UNIX
operating system:.

Section 3 is a review of the basics of ADIFOR and an overview of its use.
Notation is introduced here which will be used throughout the remainder of
this note. Section 4 contains a description of syntactic and semantic features
of the interface between the ADIFOR generated derivative and the user’s
driver code of which the user must be aware in order to write that driver
code. Section 5 speaks to the information content of Fortran data objects
involved in the interface between ADIFOR generated derivative code and
the user’s driver code. Particular attention is given to the initialization of
seed matrices and the interpretation of data returned by ADIFOR, generated
code in the derivative objects for the dependent variables. A small example
is presented in section 6 to illustrate some of the concepts presented in the
preceding part of this note. Section 7 is devoted to remarks on applying
ADIFOR to ADIFOR generated first derivative code to generate code which

4

will calculate second derivatives. This presents some difficulties which one
would not expect to encounter in processing ordinary code with ADIFOR.

3 Review of ADIFOR basics and overview of
usage

The starting point for using ADIFOR to generate code to calculate deriva-
tives is a collection of Fortran subprograms written in (almost) ANSI stan-
dard Fortran 77 source code contained in one or more files (see |2, Section
3.3, “Acceptable FORTRAN 77 Source Files”]) which defines the dependency
of the function(s) to be differentiated on some variable(s). For purposes of
this discussion, this functional dependency will be represented abstractly as
f (x) where it is to be understood that x might represent one or more in-
put scalar values and f might represent one or more output scalar values.
The scalar components of this abstract f might be contained in in a single
Fortran variable or array, or might be the result of collecting together any
number of Fortran variables and/or arrays of arbitrary size and number of
dimensions. The same is true of the abstract x. The Fortran variables and
arrays which make up f are called the dependent variables and the Fortran
variables and arrays which make up x are called the independent variables.
However, the calculation of f must be accomplished by a single call to a sin-
gle subroutine subprogram (not function subprogram) which will be called
the top-level routine.

In addition to the restrictions in [2, Section 3.3], the user must insure
that no conflicts arise between names in the user’s code and names in the
ADIFOR generated code. The ADIFOR generated Fortran code is written
in files. In the course of doing this, ADIFOR creates many names such as
file names, subprogram names, variable names, parameter names, and com-
mon block names. Many of these ADIFOR, generated names start with the
same two characters, the ADIFOR naming characters. The default naming
characters are “g” and “_”; these can be changed by ADIFOR preproces-
sor options AD_PREFIX and AD_SEP, respectively. Some of these ADIFOR
generated names (examples include g_p_ and g_pmax_) are hardwired in
ADIFOR. Other ADIFOR generated names are created by prepending the
ADIFOR naming characters to a name which comes from the user’s input.
If a file named code . f is processed, ADIFOR, writes a file named g_code . f.

)

If a subroutine named xdot is processed, ADIFOR produces a subroutine
named g_xdot. If a variable named x is processed, ADIFOR. uses the name
g_x for its derivative object and, sometimes, the variable name 1dg_x for a
variable to hold the value of the first dimension of this derivative object (the
rule here seems to be that the letters 1d are prepended to the name of the
derivative object — this is the only case of which the author is aware in which
the ADIFOR naming characters are used other than at the beginning of the
name).

Since ADIFOR generates code by adding new lines of code to the user’s
code (with the exception that the user’s SUBROUTINE or FUNCTION line is
modified), the generated code contains all the user’s original names and also
the ADIFOR generated names. The user must select ADIFOR naming char-
acters so that no naming conflict arises between the user’s names and the
ADIFOR. generated names. The same caution also applies to file names.

Except for Fortran 77 intrinsic functions (like sin and log), all functions
and subroutines on which the top-level routine depends either directly or
indirectly must be included in the collection of subprogram files passed to
ADIFOR, [2, §3.2, p. 17|. This includes routines which the user normally
calls from libraries (e.g., LAPACK [4]). The values of the Fortran variables
and/or arrays which make up x may be passed into the top-level routine
by placing the variables and/or arrays in the calling sequence of the top-
level routine, or in common blocks, or some of each. The variables and/or
arrays which make up f may be returned to the calling routine in the same
manner. Although ADIFOR. permits multiple subprograms to reside in a
single subprogram file, the experience gained during the work mentioned in
section 1 indicates that there are advantages to placing each subprogram in
its own file. A file containing multiple subprograms can be processed into
files each containing a single subprogram using the UNIX utility fsplit.

The presence of Tab characters in Fortran source code passed to ADIFOR
has been know to make ADIFOR. crash. Tab characters can be introduced
into text files such as those which contain Fortran source code by text editors
such as the UNIX editor vi without deliberate action on the part of the code
writer. If this problem arises, the UNIX utility expand can be used to replace
Tab characters in a file by an equivalent number of spaces.

The user’s wishes are then made known to ADIFOR through the provision
of two items of information. The first is a composition file which lists the
names of those source code files. The rules governing composition files are
given in [2, §3.2, p. 17]; for an example, see [2, Figure 4.3, p. 22|. The second

6

is a list of ADIFOR. preprocessor options which, for purposes of this note,
will be assumed to be contained in a script file (ADIFOR also allows the
option of passing some or all of them as command line parameters). The use
of preprocessor options is covered in |2, §3.1, pp. 17ff] with an example in [2,
Figure 3.1, p. 16].

At a minimum, the script file must set 5 preprocessor options:

AD_PROG This option must be set to the name of the composition file; e.g.:
AD_PR0OG=example.cmp

AD_TOP This option must be set to the name of the top-level routine; e.g.:
AD_TOP=calcxhat

AD_IVARS This option must be set to a (comma separated) list of the in-
dependent variables, the Fortran variable and/or array names which
make up x; e.g.:

AD_IVARS=wl,w2,y

AD_DVARS This option must be set to a (comma separated) list of the depen-
dent variables, the Fortran variable and/or array names which make
up f.

AD_PMAX This option must be set to the integer which will be used in ADI-
FOR generated derivative code as the value of the INTEGER parameter
(default name “g_pmax_") which it uses as the first dimension of many
of the derivative objects. Proper choice of this option is based on the
user’s determination of just exactly what derivative-related informa-
tion the user wishes the ADIFOR generated code to calculate. How
to choose AD_PMAX will be explained at more length in section 5 of this
note.

Even if ADIFOR is already installed on the user’s computer, the user
needs to be familiar with the information in [2, Section 2.1.1, “Unix In-
stallation and Configuration”|. This gives information on how the user’s
computer environment must be configured in order to run the Adifor2.1
command which generates the Fortran code for derivative calculation. On
the author’s (Linux) computer, this is accomplished by executing the follow-
ing commands, either by including them in a log-in initialization file (e.g.,
.cshrc) or by executing them directly in a window where the ADIFOR pro-
cessing is to take place:

setenv AD_HOME /home/dgiesy/ADIFOR_2.0D/ADIFOR2.0D

setenv AD_LIB /home/dgiesy/ADIFOR_2.0D/ADIFOR2.0D.PGI.1lib
setenv AD_0S Linux86

setenv PATH $AD_HOME/bin:$PATH

if ($7MANPATH == 0) then

setenv MANPATH °’ :$AD_HOME/man

else

setenv MANPATH $AD_HOME/man:$MANPATH

endif

(If these commands are places in a script to be executed in the working
window, the script must be executed using the UNIX source command.)
Of these commands, the user must tailor the first three to the user’s own
computer environment; the remainder are generic. Once the user’s computer
environment has been configured, the files with the derivative code are gen-
erated using a command of the form:

% Adifor2.1 AD_SCRIPT=script_file_name

The user should be aware that the execution of the ADIFOR command
generates many of files in the directory in which it is executed, and also
generates a subdirectory of the working directory whose default name is
AD_cache. Assuming the default ADIFOR naming characters “g_” are used,
the derivative calculating code which was generated by the ADIFOR run is
contained in files which have names of the form g_x.f (the * in g_x.f is the
UNIX “wild card” character and stands for an arbitrary character string).
These files are useful to the user. The remaining files and subdirectory might
pose a problem if the user needs to rerun ADIFOR (for example, after editing
some of the original source code or when making a second run to generate
second derivative code). The AD_cache subdirectory is supposed to contain
information which provides an incremental reprocessing capability, [2, p. 40].
However, the GCB group has found a situation (changes to an INCLUDE file)
where ADIFOR failed to detect that a subroutine needed to be reprocessed.
The people at Rice University who maintain ADIFOR, have been notified of
this problem and will, presumable, fix it in future versions.

Until then, and for safety’s sake and at a possible cost in processing time,
the procedure of removing all ADIFOR generated auxiliary files and subdi-
rectories after an ADIFOR processing run has been adopted. As long as the
default ADIFOR naming characters, g_, are used, this can be accomplished
on a UNIX system by the single command:

8

% \rm -r AD_cache/ g_x*.[aAl* .*x.f *.f~
Note that every period and tilda in this command is significant — without
them, some important files might be deleted.
The user then examines the derivative code generated by ADIFOR for
information needed to make use of it. The user must:

1. Determine which of the AIDFOR generated routines and which (if any)
of the user’s original routines in the configuration file are needed by the
derivative counterpart of the top level routine. A software tool (FTN-
CHEK) which can be used to generate the subprogram dependency
tree of a subroutine is discussed in the Appendix.

2. Determine what the derivative objects are in the calling sequence of
the top level routine and in ADIFOR generated common blocks.

3. Determine the calling sequence of the derivative counterpart of the top
level routine.

4. Write driver code to interface with the ADIFOR generated derivative
code.

5. Incorporate the driver code and the ADIFOR generated derivative code
into an application program.

6. Compile, link and load, and run the application package.

Information from stage 1 is used to determine which subroutines must
be examined at stage 2. Information from stages 2 and 3 are necessary to
stage 4. Information from stage 1 can also be used to avoid compiling and
linking unnecessary subprograms at stage 6. Once the application program
with the incorporated driver code and ADIFOR generated derivative code
is compiled, the configuration information set previously is also used during
the “link and load” phase to access the ADIFOR run-time libraries needed
by the ADIFOR generated derivative code.

4 Semantics of the interface to ADIFOR
generated code

For each subroutine in each file named in the user’s composition file (or, at
least, each subroutine which is determined by ADIFOR. to contribute to the

dependency of f on x), ADIFOR generates a derivative subroutine whose
name is gotten by prepending the ADIFOR naming characters to the sub-
routine name. The purpose of this section is to give the user information
about how to use the ADIFOR generated subroutines. The most common
scenario is that the user only needs to know how to call the derivative sub-
routine corresponding to the top-level routine, and this is the case which will
be emphasized here.

The reader is assumed to be familiar with [2, Section 2.3.2, “Variable
Nomination”|. There, the notion of an active variable is defined; the collec-
tion of active variables contains any of the Fortran data items (scalar variables
or arrays) which fall on the chain of dependency between the independent
data items and the dependent data items (including the independent and
dependent data items themselves). Constraints of syntax may demand that
other variables also be declared active (this will be illustrated in section 6).
ADIFOR. scans the code to be differentiated and determines which variables
it will consider to be active. All remaining variables are called passive.

The user needs to know which of the variables involved in the interface
between the user’s driver code and the ADIFOR generated derivative code are
active. It is difficult to tell the user how to determine in advance of actually
running ADIFOR. which of the variables will be active. For example, it is
possible for a variable which does not depend on the independent variables to
be declared active by ADIFOR. This might happen if the top-level routine
calls some subroutine more than once, and if a truly active parameter is
passed to the subroutine in one of the calls, then for syntactical consistency
every parameter passed to the subroutine in the same parameter position
in other calls must be treated as active even if it is not in the chain of
dependency between the independent variables and the dependent variables.
Thus, the user needs to process the code to be differentiated with ADIFOR
and examine the generated derivative code to determine which variables are
being treated as active.

With each active Fortran scalar or array data item, ADIFOR associates
a vector or array which is also named by prepending the ADIFOR naming
characters to the name of the Fortran data item. In reference [2], these new
Fortran data objects are variously called “directional gradient objects”, “gra-
dient objects”, “derivative objects”, or (if the active Fortran data item was
declared with ADIFOR. preprocessing option AD_IVARS to be an independent
variable) “seed matrices”. So, if an active Fortran data object is named xhat,
then its derivative object will be named (under default options) g_xhat. This

10

section is devoted to providing the reader with information about which of
these derivative objects need to be declared in the user’s driver software
and/or used in calls which the user makes to the ADIFOR generated deriva-
tive code. Section 5 will discuss the information contained in these derivative
objects.

Every derivative object is an array which has one more dimension than
its parent, the Fortran data object which gave rise to it. Thus, each active
scalar has a one-dimensional derivative object, i.e., a vector; each active two-
dimensional matrix has a three-dimensional array for its derivative object;
and so on. If the parent of a derivative object was passed to the top-level
routine as a parameter in its argument list, the first dimension of the deriva-
tive object is specified by the user supplied driver code. ADIFOR. specifies
the first dimension of all other derivative objects. These specifications will be
discussed in section 5. The remaining dimensions (if any) are copied directly
from the dimensions of its parent.

Active variables may be partitioned into three categories:

1. Variables which are local to the top-level routine or to one of the sub-
programs subordinate to it.

2. Variables which are global by virtue of being located in common blocks.
3. Variables which are dummy arguments to the top-level routine.

What the user needs to know about and do with a derivative object depends
on which of these categories its parent belongs to.

4.1 Local variables

The user does not need to do anything about these variables.

Caveat: This assumes that the user calls only the top-level routine.
The more advanced user who is calling one of the subordinate derivative
subroutines directly must treat any active variables appearing in its dummy
argument list under category 3.

4.2 Variables in common

The user must be concerned about any common block which is declared both
in the user’s driver program for the top level subroutine and in any of the

11

subroutines named in the composition file to be passed to ADIFOR. The
user must determine the answers to two questions:

1. Does the common block contains any active variables? If so,

2. does the user need either to initialize any of the derivative objects for
active variables in the common blocks or to access any values in any of
the derivative objects after the derivative code has executed?

The second question will be addressed in section 5. To answer the first
question, the user must search the ADIFOR generated derivative code for
the corresponding ADIFOR, generated derivative object common block. The
name for the ADIFOR generated block is formed from the name for the user’s
original common block by the usual prepending of the ADIFOR naming
characters.

If the answer to the first question is “yes”, almost certainly the answer to
the second question is also “yes”. If the answer to both questions is “yes”, the
user must declare the ADIFOR, generated derivative object common block in
the driver code. This means not only copying the ADIFOR generated common
statement into the driver program but also copying the size declarations for
all the data arrays in the common block. In addition, the declarations

integer g_pmax_

parameter (g_pmax_ = ...)
which occur in the ADIFOR generated code must also be included in the
driver program. The parameter g_pmax_ is used by ADIFOR as the first
dimension of gradient objects in common blocks (and of gradient objects
whose parents are local variables). Note that if more than one common
block is involved, they all use the same declarations for g_pmax_ and the
g_pmax_ declarations should be copied into the driver program only once.

4.3 Dummy arguments to the top-level routine

There is a connection between the dummy argument list of a user-supplied
subroutine which has been passed to ADIFOR and the dummy argument
list of the corresponding derivative subroutine generated by ADIFOR. The
first argument to the derivative subroutine is an ADIFOR generated INTEGER
variable whose default name is g_p_ which the user must set when the deriva-
tive subroutine is called by the user’s driver program. The value to choose
for g_p_ is explained in section 5.

12

The remaining dummy arguments of the derivative code are directly re-
lated to the dummy arguments of the original code. The nature of the relation
depends on whether the original dummy argument was declared to be active
or passive by ADIFOR. A passive dummy argument of the original code is
simply copied directly into the dummy argument list of the derivative code
without any change or additional arguments.

An active argument of the original code is also copied directly into the
argument list of the derivative code. However, two more arguments are put
in the argument list of the derivative code directly after this copy of the
original argument. Perhaps this is best illustrated by example. If the active
argument is xhat, then at the place in the argument list of the original code
where xhat appears, the derivative code has the three arguments:

xhat, g_xhat, ldg_xhat
This again assumes that the default naming characters were used. If ADI-
FOR had processed this example under preprocessing options AD_PREFIX=h
and AD_SEP=$, the three arguments in the derivative code would have been:

xhat, h$xhat, ldh$xhat
Suppose further that in the original code xhat has been declared:

double precision xhat(5,3)

The user must decide what the first dimension of g_xhat is going to be —
this subject is covered in section 5. Suppose for the purpose of illustration
that the first dimension has been chosen to be 20. Then, in the driver code,
the user must declare g_xhat to be a double precision array of dimensions
(20,5,3). Further, prior to the call to the derivative subroutine, 1dg_xhat
must have been set to 20 (or the literal value 20 must be used in the actual
call).

This must be repeated for each active argument in the calling sequence of
top-level routine (or whatever derivative subroutine the user wishes to call).
Notice that this depends on which of the dummy arguments to the original
top-level subroutine have been declared active by ADIFOR. Thus, the user
must first apply ADIFOR to the code to calculate f (x) before the user can
determine all the needed information to write the driver program for the
derivative code.

Observe that every parameter of the original subroutine appears in the
calling sequence of the derivative subroutine. Furthermore, all of the code
functionality of the original subroutine is duplicated in the derivative subrou-
tine. This means that when the derivative subroutine is called, then all the
original subroutine calculations are performed, and returned to the user just

13

as the original subroutine did. Some derivative information is also calculated
and returned. This is the subject of section 5.

5 Information in ADIFOR generated Fortran
data items

This section supplements and elaborates on [2, Section 2.4, “Functionality
of ADIFOR 2.0-Generated Code”| and [2, Appendix A, “Seed Matrix Ini-
tialization”]. Information will be given as to which of the derivative objects
needs to be initialized, and to what, prior to a call to ADIFOR generated
derivative code; how to determine the proper value for the ADIFOR, prepro-
cessor option AD_PMAX and the proper value to pass to the ADIFOR. generated
dummy argument g_p_; and what derivative information is being returned
by the ADIFOR generated derivative code.

5.1 Scalar f, vector x

For simplicity, first consideration will be given to the case that the dependent
variable f is a scalar residing in Fortran variable £, and that the vector x
of independent variables resides in a single Fortran vector array x. Assume
that the top-level routine starts out:
subroutine func(n,x,f)
integer n
double precision x(%*), f
Further assume that this subroutine has been processed by ADIFOR with x
specified as the independent variable, £ as the dependent variable, and with
the option AD_PMAX set to 20. Then the user’s interface to the derivative code
could well be defined by the Fortran statements:
subroutine g _func(g_p_, n, x, g_x, 1dg x, £, g f, 1ldg f)
integer n
double precision x(*), f
integer g_pmax_
parameter (g_pmax_ = 20)
integer g p_, ldg_f, ldg_x
double precision g f(ldg f), g x(1dg x, *)

14

The linear combination of partial derivatives which is the “natural” out-
put of derivative related information from the ADIFOR generated derivative
subroutine g_func for this case is the vector inner product between the gra-
dient of f and a vector of coefficients, say v, which contains the same number
of elements as the vector x of independent variables. These coefficients are
passed by the user to the derivative subroutine by storing them as a row
of the gradient object g_x of the independent variable. The function of the
first dimension of the gradient objects is to provide storage for the sets of
coefficients used by the ADIFOR generated subroutines in the linear com-
binations of partial derivatives which they compute and to provide storage
for intermediate and final computed results which use theose coefficient sets.
The freedom to select what will be in the rows of the seed matrices
(the gradient objects for the independent variables) gives the user
a great deal of flexibility in what derivative related information will
be calculated.

If the user wants the partial derivative of f with respect to one of the
scalar variables in x, the user can choose v to be the “elementary” vector
the same size as x with all zeros except for a single 1 in the proper position.
If the user wants a directional derivative of f, the user can choose v to be
a unit vector pointing in the desired direction. If the user already knows
0x/ 0w and wants to calculate of /9w by the chain rule:

of of odx

ow Jxow’
the user can find one component of df /9w by choosing v to be the transpose
of a column of dx/dw. In fact, the user can calculate all of df /0w by
setting each row of the derivative object of x to the corresponding column of
ox/dw; i.e., g_x is set to (dx/dw)’, the transpose of dx/dw. If this is done
and g_func is called, g_f will contain (9f/9w)’ (cf. (2, p. 10, p. 46]).

The user can do this because one of the features of the derivative code
generated by ADIFOR is that, in one call, it will calculate the inner product
of the gradient of f with as many vectors as the user wishes. When the
user calls an ADIFOR generated subroutine, the user tells the subroutine
how many linear combinations of the gradient the user wishes the code to
calculate by the user’s setting of the actual argument value corresponding to
the dummy argument g_p_. Suppose the user wishes the complete gradient
of f. A natural way to do this is to initialize g_x to the identity matrix. Since
row i of the identity matrix is a vector with a 1 in its ith component and zeros

15

elsewhere, its inner product with the gradient of f is df /9dx;. This value is
returned to the user by g_func in vector g_f as array element g_f (i).

The user could even combine the calculation of the full gradient with
one or more directional derivatives or other gradient-vector inner products
in a single call by properly initializing the seed matrix (gradient object of
the independent variable). The only caution here is that the larger the seed
matrices are, the longer the derivative code takes to execute and the more
memory it requires.

Choice of AD_.PMAX: The value the user assigns to the ADIFOR
preprocessing option AD_PMAX is used by ADIFOR as an upper bound for the
number of linear combinations of partial derivatives which the derivative code
will be required to compute on any one call. The derivative objects which are
passed to derivative code through the calling sequence reside in arrays which
are declared by the user to have whatever first dimension the user chooses,
and that first dimension is passed to the derivative code through calling se-
quence parameters like 1dg_x and 1dg_£ in the example just given. However,
ADIFOR. must assign the first dimension to derivative objects whose parents
are in common blocks or are local to the original code. The user’s AD_PMAX
value is assigned to ADIFOR generated INTEGER parameter g_pmax_, and
ADIFOR. uses this parameter for the first dimension of common block and
local variable gradient objects. The gradient code will check if the number
of inner products requested in g_p_ is greater than the value of g_pmax_.
If it is, then ADIFOR. generated derivative objects for local and common
block variables are not large enough for the requested calculation, an error
condition exists, and the ADIFOR generated code will stop execution.

Recapitulation: In order to generate code to calculate derivative re-
lated values of a scalar valued function f of a single vector variable x and
put it to use in an application, the user must:

1. Prepare the ADIFOR script and composition files. The user must know
an upper bound on the number of gradient-vector inner products which
the user will want the gradient code to calculate on any one call, and
assign that number to the ADIFOR, preprocessing option AD_PMAX.

2. Use ADIFOR to generate the gradient code. The user must:

(a) Prepare the computer environment for ADIFOR by setting the
proper environment variables as in [2, Section 2.1.1, “Unix Instal-
lation and Configuration”].

16

(b)

Execute ADIFOR. by a command of the form:

% Adifor2.1 AD_SCRIPT=script_file_name
For ADIFOR. 21.D, it is probably safest to do this in a working
directory from which has been removed any files and subdirectories
generated by any earlier execution of Adifor2.1.

3. Write the driver code for the gradient code. The user must:

(a)

(c)

Examine the ADIFOR generated gradient code to determine the
exact form of the interface. This includes the calling sequence of
the gradient counterpart of the top-level routine and any ADIFOR
generated common blocks containing any gradient object.

Initialize gradient objects according to section 5.5. In particular,
for each call to the gradient code, determine what gradient-vector
inner products are desired. Declare arrays g_x and g_f of large
enough first dimension and (for g_x) appropriate second dimen-
sion. Set g_p_ to the number of these products. Initialize the
rows of g_x with the multiplier vectors for these products.

After the call to the gradient code, harvest the result correspond-
ing to row i of g_x from g_f(i).

4. Compile and link the application using the ADIFOR. generated deriva-
tive code and referencing the ADIFOR, run-time libraries, etc. [2, Sec-
tion 2.1.1, “Unix Installation and Configuration”| in the link phase.

Notation convention: This note has been written (and, for the most

part, will continue to be written) as if actual arguments in calls to ADIFOR
generated gradient code have the same names as the dummy arguments in
the code being called. Of course, the user can name variables in the driver
code with any legal Fortran 77 variable name. The use of the same name for
actual arguments in the driver code and dummy arguments in the ADIFOR

generated derivative code is just for clarity of identifying which goes with
which.

5.2 Scalar f, arbitrary independent variables

Next, consideration is given to the case that the dependent variable is a
single scalar variable, but the independent variables for differentiation are

17

distributed over several Fortran data objects which may be a mixture of any
number of scalar variables, vectors, matrices, and/or arrays of higher dimen-
sion. When an illustration is needed, the example of subroutine funcl
will be used as a top-level routine. This subroutine starts out:
subroutine funcl(n,x,y,z,f)
integer n
double precision x(*), y, z(3,5), £
Assume that the function of the dummy argument n is to pass to funcl the
actual length of the vector being passed in argument x. Assume that this
subroutine has been processed by ADIFOR. with the independent variables
specified to be x, y, and z; the dependent variable specified to be £; and the
option AD_PMAX set to 35. Then the user’s interface to the derivative code
could well be defined by the Fortran statements:
subroutine g_funcl(g_p_, n, x, g_x, 1dg_x, y, g.y, 1ldg_y,
xz, g z, ldg z, f, g_f, ldg f)
integer n
double precision x(x*), y, z(3, 5), f
integer g_pmax_
parameter (g_pmax_ = 35)
integer g p_, 1ldg_f, ldg_y, ldg_x, ldg_ =z
double precision g f(1ldg f), g y(1ldg_y), g x(1dg_x, *),
* g z(1dg_z, 3, 5)

The “natural” output of derivative related information from the ADIFOR
generated derivative subroutine g_func1 for this case is again a collection of
linear combinations of the partial derivatives of f with respect to each vari-
able or array element in the independent variables. But, because of the
greater complexity of the data structures containing the independent vari-
ables as opposed to the previous single vector case, some clarification is in
order.

The gradient of f has one scalar component for each variable and each
array element of an array in the list of independent variables. It is convenient
to think of this gradient as being stored in a collection of variables and arrays
which is conformable with the independent variables; by which is meant that
the hypothetical collection of gradient variables and arrays matches the list
of independent variables one for one in number of dimensions and size. (An
inspection of ADIFOR generated code reveals that the gradient is not, in
fact, stored in this manner — this is just a mental picture.) Referring to the

18

example g_funcl, lets give names to these hypothetical variables and arrays:
dfdx represents a vector the same length as x, dfdy represents a scalar, and
dfdz represents a 3 by 5 matrix. Then, for example, dfdz(2,3) is imagined
to contain the partial derivative of £ with respect to z(2,3).

If g_funcl is to form a linear combination of the partial derivatives of f,
it needs coeflicients for that linear combination. Think of these coefficients
as being stored in another collection of Fortran data objects which is con-
formable with the independent variables. This is not hypothetical, it actually
happens; and it is the user who provides this data to g_funcl. For each set
of coefficients for which the user wants the linear combination, the user picks
an integer to use as a first index in the gradient objects for the independent
variables and stores the coefficients in the gradient objects using that inte-
ger as the first subscript. Thus, the user’s third set of coefficients would be
stored in locations g_x(3,1i) fori =1, ..., n; y(3); and g_z(3,i,j) for 1
=1,...3and j=1,...,5.

Some vocabulary from the lexicon of Fortran 95 (see, e.g., |5, Section
6.4.4, pp. 165f1]) is introduced here:

The rank of an array is the number of dimensions in the array. For consis-
tency, a scalar is considered to have rank 0.

The extent of an array in one of its dimensions is the number of elements
in that dimension.

The shape of an array is an integer vector containing the same number of
elements as its rank, where each element of the vector is the extent in
the corresponding dimension. For consistency, the shape of a scalar is
a vector of length 0, sometimes referred to as the empty vector.

The size of an array is the product of its extents, i.e., the total number of
elements in the array.

An array element is any one of the scalar elements which make up the
array.

An array section of an array is defined by specifying one non-empty subset
of the allowable subscripts for each dimension and forming the sub-
array which uses the subscripts from these subsets in every possible
way. If these subscript subsets contain only one element each, then

19

only an array element is specified, and the word “section” is not used
for this case.

Using this vocabulary, the relationship of a derivative object to its parent
can be restated. The rank of the derivative object is larger by one than the
rank of its parent, and its shape results from prepending a new dimension to
the shape of the parent. That new dimension is either supplied by the user
(in the case that the parent of the derivative object is a dummy argument
in the calling sequence of the top level routine) or is set by ADIFOR as the
value of the ADIFOR, preprocessor option AD_PMAX.

A terminology is introduced here. By the ith layer of a gradient object
is meant the array section (or, possibly, array element) of the gradient object
defined by fixing its first index at the value i while allowing any other indices
to take on all of their allowable values. For two-dimensional arrays such as
were used in the example in section 5.1, layer (as used here) is synonymous
with row. Each layer of a gradient object has exactly the same size and
shape as its parent object. Using this terminology, the coefficients of the
third linear combination of the previous paragraph are stored in the third
layer of the gradient objects for the independent variables.

The linear combinations are now formed by multiplying, for each i be-
tween 1 and the user input value of g_p_, each of the hypothetical gradient
variables and arrays element by element with the corresponding data found
in layer i of the gradient objects for the independent variables. These prod-
ucts are then added up, and the result stored in layer i of g_f. The final
effect is as if the following hypothetical Fortran 77 code fragment had been
executed:

integer g_i_
Code to calculate the gradient values and place them

in the hypothetical variables and arrays
"dfdx", "dfdy", and "dfdz".

* K K X ¥

do gi_ =1, g_p_
g f(g_i_) = 0.04+00
doi=1,n
g f(g i) = g f(g i) + dfdx(i)*»g_x(g_i_,1i)
enddo
g f(g i) = g f(g_i_) + dfdy*g_y(g_i_)

20

doi=1, 3

do j=1,5
g f(g i) = g f(g_i_) + dfdz(i,j)*g_z(g_i_,i,])
enddo
enddo
enddo

As before, the user must decide which linear combinations involving the
partial derivatives of f to request from the derivative code. And, as hefore,
the user can find the partial derivative of f with respect to a chosen one of
its independent scalar variables by setting a layer of the independent variable
gradient objects to all zeros except for a single 1 in the position corresponding
to that one scalar variable. However, if the user wishes a complete gradient
of f, then the user must contend with the limitation of ADIFOR that the
layers of the gradient objects are indexed by a single integer variable, so that
the user must arbitrarily impose an enumeration on all of the desired partial
derivatives.

This will be illustrated by reference to the example from earlier in this
section. The problem is to make a call to g_funcl which returns the deriva-
tives of £ with respect to y and each of the scalar components of x and z.
The mathematical symbol n is used to to represent the number of compo-
nents of x actually in use, and this value is contained in Fortran variable n.
So, the variable x contains n scalar elements, the variable y contains 1 scalar

element, and the variable z contains 15 scalar elements.

Imposing an enumeration on the desired n + 16 partial derivatives means
selecting one of the (n+16)! permutations of these n+16 scalar elements. For
purposes of illustration, the order chosen here is to first take the elements of
x in index order, then the single element y, then the elements of z as Fortran
traditionally stores them, i.e., in column major order. The variables are then
considered to be in the order x(1), ..., x(n), y, z(1,1), z(2,1), z(3,1),
z(1,2), ..., z(3,5). This means that the user must initialize layer 1 of the
seed matrices so that the linear combination of partial derivates returned is
just of /9x;. Layer n+1 is set to return of / dy, layer n+2 to return df / dz; 1,
ete. Further assume that all calls to the code have n < 30, son +16 < 46. A
minimal value of ADIFOR preprocessor option AD_PMAX for this application
is 46. The following Fortran 90 code fragment shows how g_x, g_y, and g_z
can be initialized to instruct g_funcl to calculate the gradient of f:

!

! The gradient objects have previously been given dimensions
' g x(46,30), g_y(46), g z(46,3,5), and g f(46)

21

g p_ = n+l6
ldg x = 46
ldg_ y = 46
ldg_ z = 46
ldg_f = 46

At this point, code should be included to initialize the variables
n, x, y, and z as they would have been initialized for a call to
the parent routine, subroutine funcl.

The following lines initialize the ADIFOR generated variables:

! For starters, completly zero out the gradient objects:

g_x = 0.0d+00
g_y = 0.0d+00
g_z = 0.0d+00
g f = 0.0d+00

In=0
doi =1, n
In = In+l
g x(In,i) = 1.0d+00
enddo
In = In+l
g y(ln) = 1.0d+00
doj =1, 5
doi =1, 3
In = In+l
g z(In,i,j) = 1.0d+00
enddo
enddo

! This one should be unnecessary, but is
! done as a safety measure.

Set selected elements of the seed matrices to 1.0 so that the
desired derivative values will be returned in g f.

The INTEGER variable "In" represents the derivative object layer
number and steps through the enumeration of the derivatives.

! That’s it. Now make the call that calculates the derivatives.

call g funcl(g p_, n, x, gx, ldg x, y, gy, ldgy, &
&z, gz 1dg z f, g f, ldg f)

22

! Now the first n+16 elements of g f contain the partial derivatives of
! £ with respect to the variables x(1), .., x(n), y, z(1,1), z(2,1),
' z(3,1), z(1,2), .., z(3,5) in that order.

5.3 Arbitrary dependent variables, arbitrary indepen-
dent variables

Finally, consideration is given to the case that the dependent variables and
the independent variables for differentiation are each distributed over several
Fortran data objects which may be a mixture of any number of scalar vari-
ables, vectors, matrices, and/or arrays of higher dimension. Conceptually,
this is actually a fairly small step from the case considered in section 5.2.
Basically, what was done in the case of a scalar dependent variable is done
in the present case on an element by element basis to each element of each
of the arrays of dependent variables.

Specifically, suppose that two of the dependent variables are specified by

the Fortran code lines

double precision f1, £2(5,3,7)

common /outl/ f1, f2
Then, assuming that the ADIFOR, script file included the option specifica-
tion AD_PMAX=244, the corresponding derivative object will be specified by
the code lines:

integer g_pmax_

parameter (g_pmax_=244)

double precision g fil(g_pmax_), g f2(g_pmax_,5,3,7)

common /g_outl/ g f1, g 2

Everything which was said in section 5.2 about the relation of g_f to
f and the gradient objects for the independent variables applies without
modification to the relation of g_f1 to £1 and the gradient objects for the
independent variables of the present example. The same is also true on an
element by element basis for g_£2. So, for example, after the derivative code
of this example is called, g_£2(131,2,3,4) contains the linear combination
of the partial derivatives of £2(2,3,4) with the coefficients found in layer
number 131 of the gradient objects of the independent variables input by the
user to the derivative code.

23

5.4 Gradient of a function of several Fortran vector
variables

This section focusses on the case that the user wishes to calculate the Jaco-
bian of the dependent variables and that the independent variables reside in
several Fortran scalar and/or vector variables. This is a special case of the
case covered in section 5.3. This case is common enough, and there is a seed
matrix generation technique which is elegant enough, that it deserves spe-
cial mention. This section provides expansion and (hopefully) clarification
of ideas presented in |2, Appendix A.3|.

The general technique will be illustrated by an example. Suppose that the
independent variables are w, x, y, and z where w is a vector of length 2, x and
y are scalars, and z is a vector of length 3. Then, counting each component
of a vector variable, there are a total of 7 independent scalar variables, and to
represent the gradient of the dependent variable(s), gradient objects will need
7 layers. Declare the seed matrices to have only the necessary dimensions:
g_w has dimensions (7,2), g_x and g_y each have dimension (7) (which, for
purposes of this discussion, should be thought of as matrices of dimensions
(7,1); ie., column vectors), and g_z has dimensions (7,3). As stated in
section 5.2, an enumeration must be imposed on the 7 scalar components of
these 4 Fortran variables. A natural way to enumerate the scalar components
is to picture the vector and scalar Fortran variables as column vectors (the
scalars being vectors of one component) and imagine them to be stacked up
in the order they have been being considered; i.e., w, x, y, z. Each component
of this stack corresponds to one layer in each of the gradient objects. The
seed matrices are to be initialized so that layer i of each dependent variable
gradient object contains the partial derivative of that dependent variable with
respect to component i of this imaginary stack of independent variables.

The easiest way to picture the proper initialization of the seed matrices
to accomplish this is to imagine the seed matrices placed side-by-side in the
already established order:

gvw,gXx,8Yy,82
Collectively, these matrices cover a 7 by 7 matrix. It is no coincidence that
the collective matrix is square — going through this exercise with an arbitrary
collection of vector and scalar independent variables will always result in a
collection of seed matrices whose horizontal juxtaposition will collectively
amount to a square matrix whose order is exactly the number of individual
scalar components from all the independent variables collectively.

24

The correct initialization of the seed matrices is the one which makes
this horizontal juxtaposition of seed matrices be the identity matrix. In the
example being considered here, the seed matrices

g W, gX, gV, 872
should be initialized to

1 0] [o] o] [ooo
01| |0 |o|l|0o00O
00 |1] |ofl|0oo00
00/[,[0].,|1|,]000],
00| 0| o[[100
00 |0 |0]010
00 (o] 0] |00 1]

respectively.

Some programmers have found it a little tricky to get the ones in just the
correct locations of the seed matrices. This is particularly true in case the
dimensions are parameterized by variables instead of being predetermined
constants as they are in the example which is being used in this section.
An alternative to individually initializing seed matrices for each independent
variable is to initialize a single identity matrix and then use pieces of it for
the seed matrices.

To continue the example of this section, suppose that a 7 by 7 matrix dpi
(mnemonic for “double precision identity”) has been defined in the user’s
driver code and set to the identity matrix. Suppose that the SUBROUTINE
declaration line of the top-level subroutine is:

subroutine tls(w,x,y,z,f)
Suppose that the interface to the ADIFOR, generated counterpart is:
subroutine g_tls(g_p_,w,g w,ldg w,x,g _x,1dg_x,y,g_y,1ldg_y,
* z,8.z,1dg z,f,g f,1dg_f)
Then, once w, x, y, and z have been initialized, a Fortran 77 call which would
calculate the desired gradient of £ would be:
call g t1s(7,w,dpi(1,1),7,x,dpi(1,3),7,y,dpi(1,4),7,
* z,dpi(1,5),7,f,g_£,7)
This passes the proper submatrices of the identity matrix for each of the seed
matrices. Using Fortran 90 syntax, the same task could be accomplished with
the call:
call g_tls(7,w,dpi(:,1:2),7,x,dpi(:,3),7,y,dpi(:,4),7,&
& z,dpi(:,5:7),7,f,g_£,7)

25

Here, explicitly specified sections of the dpi matrix are passed in each seed
matrix argument slot.

5.5 Preparing to call ADIFOR generated subroutines

In this section, consideration is given to initializations the user must make
in the driver code to call the top-level gradient subroutine generated by
ADIFOR.

It has already been seen that all data objects which were present in the
interface between higher level code and the user’s top-level routine are also
present in the interface between the user’s driver code and the gradient soft-
ware generated by ADIFOR. These data objects must be initialized exactly
as they are if the top-level routine is to be used to calculate a value of the
function. The ADIFOR. generated derivative code also used three types of
ADIFOR generated variables to interface with the user:

1. An integer variable (default name, g_p_).

2. For each variable in the interface to the top-level routine which is de-
clared to be active by ADIFOR, a corresponding gradient object (for
example, if xhat is an active variable, then the default name of the
corresponding gradient object is g_xhat).

3. For each gradient object which occurs in the calling sequence of the
gradient code corresponding to the top-level routine, an integer variable
(for example, if the gradient object is named g_xhat in the ADIFOR
generated derivative code, then the associated integer variable is called
1ldg_xhat there.

The type 1 integer variable, g_p_, must be initialized by the user to
the number of linear combinations of the partial derivatives of each scalar
component of the dependent variables the user wishes to calculate using
some user supplied coefficients. This value must never be larger than the
value given to the ADIFOR. preprocessor option AD_PMAX. Reminder: In the
user’s driver code, if the user is using the ADIFOR dummy parameter name
g_p_ for the actual argument name, then the user must include an INTEGER
declaration for the variable g_p_. Otherwise, the Fortran compiler will, by
default, declare g_p_ to of type REAL.

For every gradient object in the calling sequence of the gradient code
corresponding to the top-level routine, the user must include a declaration

26

of that array in the user’s driver code; and in that declaration, the user
must choose a value for the first dimension. That value must be at least
as big as the largest value of g_p_ which the user will ever use with that
gradient object. The value of that first dimension declaration must be passed
to the gradient code for the top-level routine in the corresponding type 3
integer variable. Helpful hint: for gradient objects in ADIFOR generated
common blocks, the first dimension has been assigned by ADIFOR. and the
user should just copy the ADIFOR, generated declarations for these variables
and common blocks into the user’s driver code.

Of the type 2 variables, those belonging to independent variables are
referred to in reference [2] as seed matrices. The user must initialize these seed
matrices. The subject of initializing seed matrices is covered in sections 5.1
through 5.4 of this Technical Memorandum as well as, for example, sections
2.5 and 4 and appendix A of reference [2].

Of the remaining gradient objects, the safe recommendation is to set them
all to zeros. If the parent of a gradient object is being used to input data to
the top-level routine, then zeroing out its gradient object is necessary. (This
assumes that the data in the parent object does not depend on any of the
independent variables. If this assumption is false, then the user probably
has not chosen the correct top-level routine.) If the parent object is never
referenced by the top-level routine or any of its subordinate subprograms
until one of them sets values in it, then there is no theoretical reason why
the associated gradient object would need to be initialized; but no harm can
come from zeroing it out.

6 An example

In the following example, a 2 by 2 matrix Y (contained in the Fortran array y)
depends on the 2 by 2 matrix X (contained in the Fortran array x) according
to the formula

Y = X'AX

where A is a 2 by 2 constant matrix (contained in Fortran array a) and X' is
the transpose of X. This calculation is made in two steps with intermediate
results stored in a 2 by 2 workspace matrix W (contained in the Fortran
array w):

W = AX

27

Y =X'W

The calculation is done by subroutine test whose dummy argument list
includes the arrays x, y, and w. The coefficient array a is communicated to
subroutine test through common block /dataset/. The top-level routine
is in file test.f:

subroutine test(x,y,w)

double precision a(2,2), x(2,2), y(2,2), w(2,2)

common /dataset/ a

call DGEMM(°N’, °'N’, 2, 2, 2, 1.0d0, a, 2, x, 2, 0.0d0, w, 2)
call DGEMM('T’, ’'N°, 2, 2, 2, 1.0d0, x, 2, w, 2, 0.0d0, y, 2)
return

end

The subroutine, DGEMM, called twice by test.f, is a matrix-matrix multiply

routine from the BLAS (Basic Linear Algebra Subprograms, [6] and [7]).
The ADIFOR script file test.adf for this top-level routine is:

AD_PROG=test.cmp
AD_TOP=test
AD_IVARS=x
AD_DVARS=y
AD_PMAX=4
AD_OUTPUT_DIR=.

Notice that the single independent variable x and the single dependent vari-
able y are both 2 by 2 matrices. The complete gradient 0Y/0X is desired,
and X is made up of 4 scalar variables (x is made up of 4 array elements),
so the ADIFOR, preprocessor option AD_PMAX has been set to 4. The script
file references the composition file test . cmp:

test.f
dgemm.f
Isame.f
xerbla.f

The two files 1same. f and xerbla.f contain subroutines called by subroutine
DGEMM (which is in dgemm.f) and so must be available for ADIFOR to scan.
As it turns out, they are not involved in the dependency of y on x, so no
derivative code is generated for either of them.

After the user’s computer environment has been prepared according to
the instructions in [2, Section 2.1.1|, the gradient code can now be generated
using the command:

% Adifor2.1 AD_SCRIPT=test.adf

28

Following the execution of the Adifor2.1 command, many new files (some
hidden, i.e., named with an initial period) and a subdirectory (AD_CACHE)
appear in the working directory. Of interest to the user are files related
to those listed in the composition file and containing the derivative code.
Two are generated, g_test.f and g_dgemm.f. The user must also take
note of what is NOT generated; even though the composition file contains
lsame.f and xerbla.f, there is NO g_lsame.f or g_xerbla.f generated.
This indicates that ADIFOR has determined that lsame.f and xerbla.f

were not involved in the dependency of y on x.

Information which the user needs to write a driver for the derivative
code is contained in the top-level derivative routine, g_test. This is in file
g_test.f which (minus some ADIFOR generated prefacing comments) looks
like:

subroutine g test(g p_, x, g x, ldg x, y, gy, ldgy, w, g w, ldg_
*w)

double precision a(2, 2), x(2, 2), y(2, 2), w(2, 2)

common /dataset/ a

double precision dl, d2

integer g_pmax_

parameter (g_pmax_ = 4)

integer g p_, ldg x, 1ldg y, ldg w

double precision g x(ldg_x, 2, 2), g y(ldg_y, 2, 2), g_w(ldg_w,
2), g a(g pmax_, 2, 2)

common /g_dataset/ g_a

integer g_ehfid

save /g_dataset/

external g dgemm

data g_ehfid /0/

*2

call ehsfid(g_ehfid, ’test’,’g test.f’)

if (g p_ .gt. g pmax_) then
print *, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
dl = 1.0d0
d2 = 0.0d0
call g dgemm(g p , 'N°, "'N°, 2, 2, 2, dl, a, g a, g pmax_, 2, X,
* g x, ldgx, 2, d2, w, g w, ldg.w, 2)
dl = 1.0d0
d2 = 0.0d0
call g dgemm(g p , T, 'N°, 2, 2, 2, dl, x, gx, ldgx, 2, w, g
* w, ldg.w, 2, d2, y, gy, ldg_y, 2)

29

return
end

An examination of the dummy parameter list of subroutine g_test
shows which of the dummy parameters to subroutine test have been pro-
moted to active status by ADIFOR. It is seen that the independent variable
%, the dependent variable y, and the workspace array w are all active. Scan-
ning subroutine g_test for common blocks, it is discovered that ADIFOR
has generated a new common block, /g_dataset/ and placed a derivative
object, g_a, for array a in it. The user will need to take this into account in

writing the driver code.

While the code to be processed by ADIFOR, must be in Fortran 77 and
the resulting derivative code is also, the driver code could be in any lan-
guage which permits of compilation into compatible binaries. The following
example driver code is written in Fortran 90. In the following listing of file
driver.f90, the leading line numbers are not part of the actual code, but
have been added for purposes of subsequent discussion:

1 program driver

2

3 ! The code which is processed by ADIFOR must be Fortran 77,
4 ! but it can be compiled by a Fortran 90 compiler and driven
5 ! by a Fortran 90 driver.

6 !

7 ! The following declarations have been lifted from g_test.f

8 ! and edited

9 !

10 double precision a(2, 2), x(2, 2), y(2, 2), w2, 2)

11 common /dataset/ a

12 integer, parameter :: g pmax_ = 4

13 integer g p , ldg x, ldg y, ldg w

14 double precision g_x(4, 2, 2), g y4, 2, 2),&

15 &g w4, 2, 2), g a(g pmax_, 2, 2)

16 common /g_dataset/ g_a

17 save /g_dataset/

18 !

19 ! Although the first layer of g y could be used to return a single
20 ! linear combinati on of partial derivatives for the second call to
21 ! g test, a new array is introduced for didactical reasons. It
22 ! need not follow the ADIFOR naming convention.

23 ! The new array is greatly overdimentioned.

24 1

25 double precision gradobj(9, 2, 2)

30

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

a
X
!
!
!
!

!

! Zero out remaining gradient objects

Now put initial data values in original code arrays

= reshape((/6.0d0, 1.0d0,1.0d0,6.0d0/),(/2.2/))
= reshape((/3.0d0, -1.0d0,2.0d0,-7.0d0/),(/2.2/))

Set up the seed matrix for a full gradient calculation

Layer 1 computes (partial y) / (partial x(1,1))
_x(1,:,1) = reshape((/1.0d40,0.040,0.0d0,0.0d0/),(/2,2/))
! Layer 2 computes (partial y) / (partial x(2,1))
g x(2,:,1) = reshape((/0.0d0,1.040,0.0d0,0.0d0/),(/2,2/))
! Layer 3 computes (partial y) / (partial x(1,2))
g x(3,:;,1) = reshape((/0.0d0,0.0d40,1.0d0,0.0d0/),(/2,2/))
! Layer 4 computes (partial y) / (partial x(2,2))
_x(4,:,)) = reshape((/0.0d40,0.040,0.0d0,1.0d0/),(/2,2/))

g_y = 0.0d0
g w = 0.0d0
g a = 0.0d0

! set integer arguments to g_test

!

gp =4
ldg x = 4
ldg.y = 4
ldg w=4

call g test(g p_, x, gx, ldg x, y, gy, ldgy, w, gw, ldg w)

!
!
!
!
!
!
!

g
g
g
g

!

! Zero out remaining gradient objects again

!

Now, y=x’*a*x and g_y contains dy/dx.
Code to use the Jacobian array could be put here.

Set up the seed matrix so g test will calculate a linear
combination of the partial derivatives of y.
desired coefficients in layer 1.

Put the
x(1,1,1)
x(1,2,1)
x(1,2,1)
x(1,2,2)

2.0d+0
-3.5d+0
0.3d+0
1.4144+0

gradobj = 0.0d0

71 g w=0.0d0
72 g a = 0.0d0

73 !

74 ! set g p_ for this call

75 !

7% gp =1 ! Only using the first layer !!!
77

78 "Leading dimension" parameters may be entered into the calli ng

!
!
79 ! sequence as literals. Notice that these must match the values
!
!

80 used in the dimensioning statements and not the g_p_ value:

81 !

82 call g test(g p_, x, g x, 4 y, gradobj, 9, w, g w, 4)

83 !

84 ' Now, y=x"*a*x (again!) and the first layer of gradobj contains
85 ! the linear combination of the partisl derivatives of y with
86 ! respect to the elements of x with the coefficients entered into
87 ! the first layer of g x.

88 ! Code to use the linear combination of partial derivatives could
89 ! be put here.

90 !

91 end program driver

In program driver, lines 10-17 show data object specifications which
have been borrowed (edited to remove unneeded variables and translated to
Fortran 90) from g_test. The array declared in line 25 will be used as a
gradient object for the dependent variable and does not follow the ADIFOR
naming convention; that is no problem, the names of the variables in the
driver program can be anything. Only the names of common blocks and
subroutines called (i.e., global symbols) and the dimension and type speci-
fications of objects in common blocks need to match what is given in the
ADIFOR generated code.

Lines 34-41 initialize the seed array g_x. For example, line 37 says that
the second layer of the seed array will be the 2 by 2 matrix

(10)

This is what is needed to select the partial derivative with respect to x(2,1)
from the gradient of y.

In lines 45-47, the other gradient objects are set to zero. Line 47 is
necessary since a is constant, but is an input value being treated as active.
The other two are just for safety. In lines 51-54, the integer arguments to

32

g_test are being set to their proper values for this call, which occurs at line
55.

In the remainder of the driver, another call to g_test is prepared and
made, this time to calculate a single linear combination of the partial deriva-
tives of y with a set of coefficients. The coeflicients are set in the first layer
of g_x in lines 63-66. The array gradobj is used for the dependent variable
gradient object. Even though it has 9 layers, only one is used. However,

g_test is told about the 9 layers in the call at line 82.

With the ADIFOR environment still in place (so that the operating sys-
tem knows about the value of environment variables like $AD_LIB), the driver
program and necessary subroutines can be compiled, linked, and run by the
commands:

% 90 -c driver.f90

% 90 -c g_test.f

% 90 -¢ g_dgemm.f

% 90 -c lsame.f

% 90 -c xerbla.f

% f90 -o runfile driver.o g_test.o g dgemm.o lsame.o xerbla.o\
% $AD_LIB/lib/ReqADInt rinsics-$AD_0OS.o\

% -L $AD_LIB/lib -lADI ntrinsics-$AD_OS

% runfile

The £90 command indicates invocation of a Fortran 90 compiler. It is not
necessary to compile and load test.f and dgemm.f since their functions
are duplicated in g_test.f and g_dgemm.f. However, since dgemm.f called
1same and xerbla and these subroutines were not differentiated, g_dgemm. f
also calls them and their files must be included in the compile and link.

7 Generating code to calculate Hessians

ADIFOR 2.0D can be used to generate code for the calculation of gradi-
ents. This is useful. However, there are some applications such as the one
which motivated this study (section 1) which need Hessians and other sec-
ond derivative information. The developers of ADIFOR. have, in version 3.0,
a processor which can generate Hessian information. However, at the level
of support and documentation which exists as of the time of this writing,
ADIFOR. 3.0 is not a viable option for the general user. So, an alternative is
explored.

ADIFOR 2.0D accepts as input Fortran 77 code which calculates a func-
tion and produces as output Fortran 77 code which calculates the linear

33

combinations of the partial derivatives of that function. Suppose that one
needs Fortran 77 code which calculates the Hessian (or other second deriva-
tive related information) of that function. The obvious thought is to apply
ADIFOR. 2.0D again, this time to the Fortran code which it produced on the
first application. This is what was done in the study mentioned in section 1.

The second application of ADIFOR, presents some problems which are
usually not present in the first application. As commented in section 2,
ADIFOR generates code which calculates linear combinations of the partial
derivatives of the dependent variables with respect to the independent vari-
ables. It follows that if one applies ADIFOR to ADIFOR. generated code
naming a derivative object of the first dependent variable as the new de-
pendent variable, the resulting code will calculate linear combinations of the
partial derivatives with respect to the second set of independent variables of
linear combinations of the partial derivatives of the dependent variables with
respect to the first set of independent variables. The complexity of this de-
scription of second derivative code capability is reflected in the complexity of
the code, itself. While comments will be made in section 7.3 illustrating the
full generality of the second derivative code in a simple case (scalar dependent
variable, independent variables in a single Fortran vector variable), the main
burden of the present comments will be directed at explaining how to set the
seed matrices to generate just the individual second partial derivatives and
where to harvest them. This is the information which was found sufficient to
generate and use code to calculate the second derivative information needed
in the study mentioned in section 1.

Attention will be given to the following items:

1. To avoid duplicating names of variables, etc., the naming character pair
used in the second application of ADIFOR must be changed from that
used in the first. For example, if default naming characters are used
in the first application, then one might use the ADIFOR. preprocessing
option AD_PREFIX=h in the second.

2. The user must be aware of, and make accommodations for, one idiosyn-
crasy of the default way in which ADIFOR . 2.0D deals with exceptions,

i.e., points of non-differentiability.

3. The user must choose independent and dependent variables for both
ADIFOR runs.

34

4. Derivative objects, including seed matrices, are generated by both ADI-
FOR runs, and the user must deal with questions of initialization of
and interpretation of final answers in these derivative objects.

Nothing more need be said about duplicate name avoidance. The remain-
ing points are addressed in sections 7.1 — 7.3.

7.1 Consequences of ADIFOR exception handling

This Technical Memorandum has heretofore ignored the topic of ADIFOR
exception handling (e.g., how ADIFOR generated code warns the user if
asked to provide the derivative of ABS(X) at X = 0.0D+00). For that, the
user is referred to [2], especially Appendix B. However, there is one conse-
quence of ADIFOR treatment of exceptions which has an impact on iterated
applications of ADIFOR.

Under default preprocessing options, ADIFOR generates a variable whose
name, independent of the setting of preprocessor option AD_PREFIX, is
g_ehfid. By default, ADIFOR generated code includes lines of the form:

integer g_ehfid
data g_ehfid /0/

call ehsfid(g_ehfid, ’g_func’,’h_g_func.f’)

The call to ehsfid provides information to the ADIFOR. exception
handling subroutines. The character strings ’g_func’ and ’h_g_func.f’
which appear in the call to ehsfid arise because this code fragment came
from a file named h_g_func.f which was generated by applying ADIFOR
2.0D to file g_func.f with preprocessing options including AD_TOP=g_func
and AD_PREFIX=h. The problem arises since, despite the specification of
AD_PREFIX=h, the variable name g_ehfid is being used. If the code for
g_func was generated by ADIFOR from the code for func using default
settings of ADIFOR. preprocessing options, a similar code fragment, specif-
ically including the declaration and initialization of the variable g_ehfid,
would have been generated in g_func. When ADIFOR 2.0D generates file
h_g_func.f from g_func.f, it both copies the existing declaration and ini-
tialization of g_ehfid and generates a new one. Fortran compilers treat this
duplicate declaration (and initialization) of the same variable as an error.

35

One solution for this problem is to suppress the generation of this excep-
tion handling information in one or both of the ADIFOR runs. This can be
accomplished by including the ADIFOR. preprocessor option

AD_EXCEPTION_FLAVOR=performance,

see (|2, p. 40]), in one or both of the ADIFOR runs. The choice used in the
study mentioned in section 1 was to include this option in the first derivative
generation run. This has the advantage that the code generated in this
fashion compiles without error. A disadvantage is that some attempt to
evaluate the derivative of a function at a point of non-differentiability may
go unreported to the user.

7.2 Choice of dependent and independent variables

In naming dependent variables for iterated applications of ADIFOR, the user
should remember that, in addition to ADIFOR generated code to calculate
derivative-related information for the dependent variable(s), the ADIFOR
generated subprograms contain a complete copy of all the calculations of
the original code. Thus, if a subroutine named func is processed by ADI-
FOR with variable f named as a dependent variable and default preprocessor
options, then a subroutine named g_func is generated whose calculations in-
clude both all of the calculations done for the dependent variable £ in the
original subroutine func and the additional calculations necessary to gener-
ate the proper values for inclusion in the derivative object g_f. If g_func
is then itself subjected to ADIFOR. processing with AD_PREFIX=h in order
to generate code which will calculate second derivative information for the
dependent variable £, g_f must be specified as a dependent variable in this
second ADIFOR run. This second derivative information will then be placed
in the gradient object h_g_f. It is probably unnecessary to specify f as a
dependent variable in this second ADIFOR run unless the user is playing
some very esoteric games with the dependent variable lists or the seed ma-
trices. The subroutine h_g_func will contain all of the calculations from
g_func related to g_£f. If values are chosen for the seed matrices as will be
explained in section 7.3.2 in order to calculate Hessian information for £ in
the gradient object h_g_f, these same values will result in the calculation of
gradient values for f in the gradient object g_£. If £ had also been specified
as a dependent variable in the second ADIFOR. run, the gradient object h_f
would have been generated, and, if the seed matrices g_x and h_x are set

36

to calculate the Hessian of £ with respect x, executing h_g_f would have
made two independent calculations of the gradient of £, placing copies of the
gradient in both g_f and h_f.

That said, one situation comes to mind where one might wish to declare
f to be a dependent variable in both the first and second applications of
ADIFOR. If the desired second derivative information includes only mixed
second partial derivatives from two disjoint sets of independent variables,
and if the gradients with respect to all variables in both sets is desired, then
one would want to include f as a dependent variable in both applications
of ADIFOR. Then the gradient object g_f would contain first derivatives
of £ with respect to the first set of independent variables and the gradient
object h_f would contain first derivatives of £ with respect to the second set
of independent variables.

7.3 Information content of derivative objects

For purposes of illustration in this section, it is supposed that a subroutine
named func is the top-level subroutine in a Fortran 77 software package which
computes the value returned in a scalar or array variable f (and possibly other
variables) as a function of the values passed into func in a scalar or array
variable x (and possibly other variables). It is desired to compute Hessian
information consisting (at least in part) of the (double and mixed) second
partial derivatives of (the components of) £ with respect to (the components
of) x. This is to be done with two applications of ADIFOR.

The first application of ADIFOR will be to func.f, the file containing the
subroutine func, (and possibly to other files) using default naming characters
so that the file g_func.f (and possibly others) is generated containing a
subroutine named g_func. This application of ADIFOR. will name f as a
dependent variable and x as an independent variable. This application will
include the ADIFOR. preprocessing option which prevents generation of the
variable name g_ehfid:

AD_EXCEPTION_FLAVOR=performance

The input needed by subroutine g_func will include the input variable x
to the parent subroutine func and the seed matrix g_x, and the output
produced by subroutine g_func will include the the same output £ produced
by the parent subroutine func and the derivative object g_f. With proper
initialization of g_x (and the other seed matrices, if any), execution of g_func

37

will set information in g_£f which includes the value of the gradient of £ with
respect to x at the given input values.

The second application of ADIFOR will be to g_func.f, naming g_func
as the top level routine. This application will include the preprocessing op-
tion AD_PREFIX=h and name g_f as a dependent variable and, again, x as an
independent variable. A file named h_g_func.f will be generated which will
include the code for ADIFOR generated subroutine h_g_func. The inputs
to subroutine h_g_func will include all of the inputs to its parent subrou-
tine g_func including both the independent variable x and the previously
generated seed matrix g_x and also a newly generated seed matrix h_x. The
output of h_g_func will include all of the output of its parent subroutine
g_func including the original dependent variable f, and the first derivative
information which is determined by the contents of the seed matrix g_x
(and, perhaps, other g_ seed matrices) and placed in the derivative object
g_f. The output of h_g_func will also include second derivative information
in the derivative object h_g_f. This will depend on the contents of the seed
matrices g_x and h_x (and possibly other g_ and h_ seed matrices).

In the terminology of section 5.2, a derivative object is made up of layers
which are the same shape as the parent object. Each layer of the seed ma-
trices (derivative objects for the independent variables) provides coefficients
used in forming linear combinations of the gradients of each dependent vari-
able. These are placed in the corresponding layer of the derivative object of
the dependent variable. The first subscript position of the derivative objects
is used to index through the layers. This relates derivative objects to their
parents. The next topic to be addressed is the relationship between second
derivative objects (like h_g_f) and their grandparents (for this example, f).

For purposes of illustration, suppose that £ has rank 1, so an array el-
ement of £ can be references using a single subscript, as in £(k). Then
its (first) derivative object g_f is of rank 2, and g_f (j,k) references linear
combinations of the partial derivatives of f (k) with respect to the indepen-
dent variables declared in the first application of ADIFOR using coefficients
stored in layer j of the g_ seed matrices. The second application of ADI-
FOR. adds another dimension of layers to the derivative object g_f when it
forms the (second) derivative object h_g_f. A typical element here might be
referenced as h_g_£(i,j,k). It is a linear combination of the partial deriva-
tives of g_f(j,k) with respect to the independent variables named in the
second application of ADIFOR with coefficients stored in layer i of the h_
seed matrices. Relating this back to the original function, this means that

38

h_g_£(i,j,k) contains a sum of terms of the form

92f,
a”bﬂ'yaxay

where x is a variable from the second set of independent variables, y is a
variable from the first set of independent variables, a;,. is from the x position
of layer i of the h_ seed matrix containing x, and b;, is from the y position
of layer j of the g_ seed matrix containing y. This will be illustrated in more
detail in two specific examples.

7.3.1 Scalar f, vector x

Suppose that f is a scalar and x is a vector. Suppose also that the first
application of ADIFOR names only f as dependent variable and only x as
independent variable, and that the second application of ADIFOR names
only g_f as dependent variable and only x as independent variable. Suppose
that AD_PMAX is specified to be 1 in both runs. Then h_g_f is (effectively) a
scalar, and g_x and h_x are (effectively) vectors of the same order as x. If
g_x and h_x are initialized with coeflicients from the column vectors s, and
S, respectively, then execution of the second derivative code will result in
calculation of the number

o) 55z | 60

7.3.2 Second derivatives of a function of several Fortran vector
variables

This section will illustrate the generation of second derivative information
for a function of several variables which are all contained in Fortran scalar
or vector data objects. If the technique of this section is applied to generat-
ing second derivative code by two applications of ADIFOR, using the same
AD_TIVARS setting for both, then a Hessian would be calculated. However,
it is not necessary to restrict AD_IVARS to be the same in both ADIFOR

applications, and a more general case will be illustrated.

This illustration will continue the illustration presented in section 5.4. In
addition to the independent variables w, %, y, and z introduced there, suppose
that the dependent variable has 24 scalar components contained in a Fortran
array variable f dimensioned (6,4). For simplicity, it will be assumed that

39

the computation of f is complete in the single subroutine func, and that the
interface to subroutine func is:

subroutine func(w,x,y,z, f)

All four variables, w, x, y, and z, with their total of 7 scalar components
will be declared as independent variables in the first ADIFOR. differentia-
tion, while only the three variables, x, y, and z, with their total of 5 scalar
components will be declared as independent variables in the second ADIFOR,

differentiation.
For the first differentiation, a composition file, first.cmp, is used which
contains a single line:

func.f

The script of ADIFOR preprocessing options is contained in file first.adf
which includes the lines:

AD_PROG=first.cmp

AD_TOP=func

AD_IVARS=w,x,y,z

AD_DVARS=f

AD_PMAX=7
AD_EXCEPTION_FLAVOR=perf ormance

This will generate the file g_func.f containing the subroutine g_func.
The SUBROUTINE statement for subroutine g_func is:

subroutine g_func{g p_, w, g w, ldg w, x, g x, ldg x, y, gy,
*dg y, z, gz, ldgz f gf, ldgf)

For the second differentiation, a composition file, second.cmp, is used
which contains a single line:

g_func.f

The script of ADIFOR preprocessing options is contained in file second. adf
which includes the lines:

AD_PROG=second.cmp
AD_TOP=g_func
AD_IVARS=x,y,z
AD_DVARS=f
AD_PMAX=5
AD_PREFIX=h

40

This will generate the fileh_g_func.f containing the subroutine h_g_func.
If ADIFOR. does not find it necessary to declare £ or any of the seed ma-
trices in subroutine g_func as being active, the SUBROUTINE statement for
subroutine h_g_func is:

subroutine h_g functh_p_, gp, w, gw, ldgw, x, h_x, 1dh_x, g x,
*dg x, y, hy, Idhy, gy, ldgy, z hz ldhz gz ldgz f
*g f, h_g f, 1dh_g f, 1dg f)

The user is now faced with the task of writing code which will call subrou-
tine h_g_func with the correct information to cause calculation of the desired
value. First, clarification is given of what the desired output of h_g_func is.

The mathematical vector s is used to represent the 7 scalar values w(1),
w(2), x,y, z(1), z(2), and z(3) in the 4 Fortran variables w, x, y, and z;
and t is used to represent the 5 scalar values in the 3 Fortran variables x,
y, and z. The 7 index positions of s correspond to the 7 layers of the g_
derivative objects and the 5 index positions of t correspond to the 5 layers of
the h_ derivative objects. If f;; represents the scalar function whose value is
returned by subroutine func in the (i,j) component of Fortran array £, then
it is desired that a call to h_g_func return the gradient

Js

in the array section g_£ (:,1,j) and the transposed second derivative matrix

!/
Jtos
in the array section h_g_f(:,:,1,3j). (The colon, :, used here as an array
subscript, is a special case of the subscript triplet notation of Fortran 90 as in
[5, p. 170]. It indicates that the indicated subarray uses the entire declared

range of the dimension in which the colon occurs. In this, it is identical to

the use of the colon as an array subscript in Matlab®.)

This can be accomplished by passing sections of an order 7 identity matrix
for the first derivative (g_) seed matrices and sections of an order 5 identity
matrix for second derivative (h_) seed matrices as in section 5.4. The INTEGER
variables h_p_ and g_p_ are passed as 5 and 7, respectively. The output
objects are declared:

double precision f(6,4), g f(7,6,4), h_g f(5,7,6,4)

41

All the 1dg_ parameters are entered as 7’s and all the 1dh_ parameters
are entered as 5’s. The Fortran variables w, x, y, and z are initialized to
the values at which the function and its first and second derivatives are to
be calculated. Then subroutine h_g_func can be called, and the desired
results are returned in £, g_f, and h_g_f£.

The user is again cautioned that ADIFOR may create derivative objects
for data objects which the user believes to be inactive. The user must be alert
for any cases where this occurs in the calling sequence of the (first or second)
derivative of a top level routine or in a common block. The user must declare
these extra derivative objects (with their common blocks, where appropriate)
in the driver code and should initialize them to zeros.

8 Summary

ADIFOR. 2.0D is a Fortran code processor. It converts Fortran 77 code which
calculates a (possibly vector-valued) function f of a vector argument x into
Fortran code which calculates information related to the sensitivity of f to

variation in x (including, but not limited to, df /9x). The principal reference
for ADIFOR 2.0D is [2].

This note gives one user’s experience with using the resulting ADIFOR
generated code. Emphasis is given to items the user needs to know to write
a driver code which will call the ADIFOR generated derivative software.
Explanations are given on how to deal with ADIFOR generated common
blocks. The dummy parameter list of ADIFOR generated subroutines is
explained.

The ADIFOR generated code contains data structures called derivative
objects, some of which are seed matrices which the user must initialize and
some of which contain gradients and other sensitivity information which the
ADIFOR generated code calculates for the user. This note has explained
how to initialize seed matrices and, based on what is in the seed matrices,
how to interpret the answers returned by the ADIFOR. generated code.

By taking extra precautions, it is possible to apply ADIFOR to code
which, itself, has been generated by ADIFOR. The result is code which can
calculate second derivative information for the original function f. This
process has been explained and some illustrations given.

42

Appendix: FTNCHEK as a call tree generator

FTNCHEK is a Fortran 77 program checker. It is designed to detect certain
errors in a Fortran program that a compiler usually does not. For purposes
of this note, the one of its many capabilities which is emphasized is its ability
to scan a collection of files containing Fortran 77 source code and produce a
call tree. From this, it can be determined what subprograms are required by
a specific subroutine.

FTNCHEK was designed by, and is maintained by, Dr. Robert Moniot,
professor at Fordham University. It is freely available from Netlib by visiting
the URL ftp://netlib.org/fortran and downloading file ftnchek.tgz.
More information may be found at Dr. Moniot’s web site:

http://www.dsm.fordham.edu/ " ftnchek

By default, ftnchek produces voluminous output which, while of value in
detecting programming errors in the code, does not provide the calling tree
information in a compact format. To get the calling tree for all Fortran 77
subprograms contained in *.f files in the current working directory, execute
the command:

ftnchek —-nocheck -calltree=tree,no-prune *.f > call_tree

The desired information can then be found in the file call_tree.

NASA Langley Research Center
Hampton, VA 23681-2199
March 21, 2002

References

[1] Bryson, Jr., Arthur E.; and Ho, Yu-Chi: Applied Optimal Control, Re-
vised Printing. Hemisphere Publishing Corporation, Taylor & Francis,
1900 Frost Road, Suite 101, Bristol, PA 19007, 1975.

[2] Bischov, Christian; Carle, Alan; Hovland, Paul; Khademi, Pey-
vand; and Mauer, Andrew: ADIFOR 2.0 Users’ Guide (Revi-
sion D). Tech. Rep. CRPC-95516-S, Center for Research on Par-
allel Computation, Rice Universityy, CRPC — MS 41, 6100 Main

43

Street, Houston, Texas 77005-1892, June 1998, Available from URL =
http://www.cs.rice.edu/"adifor/AdiforDocs.htm.

American National Standards Committee on Computers and Informa-
tion Processing, X3: American National Standard Programming Lan-
guage FORTRAN. American National Standards Institute, Inc., 1430
Broadway, New York, NY 10018, 1978.

Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra,
J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenny, A.; and
Sorensen, D.: LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, third ed., 1999, Errata available at
URL = http://www.netlib.org/lapack/html/errata.lug.

Adams, Jeanne C.; Brainerd, Walter S.; Martin, Jeanne T.; Smith,
Brian T.; and Wagener, Jerrold L.: Fortran 95 Handbook. The MIT Press,
Cambridge, MA, 1997.

Dongarra, J. J.; Du Croz, J.; Duff, I. S.; and Hammarling, S.: A set
of Level 3 Basic Linear Algebra Subprograms. ACM Trans. Math. Soft.,
vol. 16, 1990, pp. 1-17.

Dongarra, J. J.; Du Croz, J.; Duff, I. S.; and Hammarling, S.: Algorithm
679: A set of Level 3 Basic Linear Algebra Subprograms. ACM Trans.
Math. Soft., vol. 16, 1990, pp. 18-28.

44

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704—0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2002

3. REPORT TYPE AND DATES COVERED
Technical Memorandum

4. TITLE AND SUBTITLE
Some User’s Insights Into ADIFOR 2.0D

5. FUNDING NUMBERS
728-30-30-01

6. AUTHOR(S)
Daniel P. Giesy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-18184

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546—0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/TM—-2002—211738

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Category 61

Availability: NASA CASI (301) 621-0390

Distribution: Nonstandard

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

second derivative code.

Some insights are given which were gained by one user through experience with the use of the ADIFOR 2.0D
software for automatic differentiation of Fortran code. These insights are generally in the area of the user interface
with the generated derivative code — particularly the actual form of the interface and the use of derivative objects,

including “seed” matrices. Some remarks are given as to how to iterate application of ADIFOR in order to generate

14. SUBJECT TERMS
Automatic Differentiation, Fortran, ADIFOR

15. NUMBER OF PAGES
49

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS| Std. Z39-18
298-102

